Write an efficient algorithm that searches for a value in an m x n matrix.
This matrix has the following properties:
* Integers in each row are sorted from left to right.
* The first integer of each row is greater than the last integer of the previous row.
Example
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3, return true.
Challenge
O(log(n) + log(m)) time
一次二分搜索
由于矩阵按升序排列,因此可将二维矩阵转换为一维问题。对原始的二分搜索进行适当改变即可(求行和列)。时间复杂度为
两次二分搜索
先按行再按列进行搜索,即两次二分搜索。时间复杂度相同。
以一次二分搜素的方法为例。
/**
* 本代码由九章算法编辑提供。没有版权欢迎转发。
* http://www.jiuzhang.com/solutions/search-a-2d-matrix
*/
// Binary Search Once
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0) {
return false;
}
if (matrix[0] == null || matrix[0].length == 0) {
return false;
}
int row = matrix.length, column = matrix[0].length;
int start = 0, end = row * column - 1;
int mid, number;
while (start + 1 < end) {
mid = start + (end - start) / 2;
number = matrix[mid / column][mid % column];
if (number == target) {
return true;
} else if (number < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[start / column][start % column] == target) {
return true;
} else if (matrix[end / column][end % column] == target) {
return true;
}
return false;
}
}
仍然可以使用经典的二分搜索模板,注意下标的赋值即可。
第一次A掉这个题用的是分行分列两次搜索,好蠢...