algorithm-reading

Search in Rotated Sorted Array

对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。

Rotated Array

Source

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.
Example
For [4, 5, 1, 2, 3] and target=1, return 2

For [4, 5,1, 2, 3] and target=0, return -1

题解

对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。因此该题可转化为如何找出旋转数组中的局部有序数组,并使用二分搜索解之。结合实际数组在纸上分析较为方便。

C++

/**
 * 本代码fork自
 * http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
 */
class Solution {
    /**
     * param A : an integer ratated sorted array
     * param target :  an integer to be searched
     * return : an integer
     */
public:
    int search(vector<int> &A, int target) {
        if (A.empty()) {
            return -1;
        }

        vector<int>::size_type start = 0;
        vector<int>::size_type end = A.size() - 1;
        vector<int>::size_type mid;

        while (start + 1 < end) {
            mid = start + (end - start) / 2;
            if (target == A[mid]) {
                return mid;
            }
            if (A[start] < A[mid]) {
                // situation 1, numbers between start and mid are sorted
                if (A[start] <= target && target < A[mid]) {
                    end = mid;
                } else {
                    start = mid;
                }
            } else {
                // situation 2, numbers between mid and end are sorted
                if (A[mid] < target && target <= A[end]) {
                    start = mid;
                } else {
                    end = mid;
                }
            }
        }

        if (A[start] == target) {
            return start;
        }
        if (A[end] == target) {
            return end;
        }
        return -1;
    }
};

源码分析

  1. target == A[mid],索引找到,直接返回
  2. 寻找局部有序数组,分析A[mid]和两段有序的数组特点,由于旋转后前面有序数组最小值都比后面有序数组最大值大。故若A[start] < A[mid]成立,则start与mid间的元素必有序(要么是前一段有序数组,要么是后一段有序数组,还有可能是未旋转数组)。
  3. 接着在有序数组A[start]~A[mid]间进行二分搜索,但能在A[start]~A[mid]间搜索的前提是A[start] <= target <= A[mid]
  4. 接着在有序数组A[mid]~A[end]间进行二分搜索,注意前提条件。
  5. 搜索完毕时索引若不是mid或者未满足while循环条件,则测试A[start]或者A[end]是否满足条件。
  6. 最后若未找到满足条件的索引,则返回-1.

Java

public class Solution {
    /** 
     *@param A : an integer rotated sorted array
     *@param target :  an integer to be searched
     *return : an integer
     */
    public int search(int[] A, int target) {
        // write your code here
        if (A == null || A.length == 0) { 
            return -1;
        }

        int start = 0, end = A.length - 1, mid = 0;
        while (start + 1 < end) {
            mid = start + (end - start)/2;
            if (A[mid] == target) {
                return mid;
            }
            if (A[start] < A[mid]) {//part 1
                if (A[start] <= target && target <= A[mid]) {
                    end = mid;
                } else {
                    start = mid;
                }
            } else { //part 2
                if (A[mid] <= target && target <= A[end]) {
                    start = mid;
                } else {
                    end = mid;
                }
            }
        } // end while

        if (A[start] == target) {
            return start;
        } else if (A[end] == target) {
            return end;
        } else {
            return -1; // not found
        }
    }
}

Search in Rotated Sorted Array II

Source

跟进“搜索旋转排序数组”,假如有重复元素又将如何?

是否会影响运行时间复杂度?

如何影响?

为何会影响?

写出一个函数判断给定的目标值是否出现在数组中。

样例
给出[3,4,4,5,7,0,1,2]和target=4,返回 true

题解

仔细分析此题和之前一题的不同之处,前一题我们利用A[start] < A[mid]这一关键信息,而在此题中由于有重复元素的存在,在A[start] == A[mid]时无法确定有序数组,此时只能依次递增start/递减end以缩小搜索范围,时间复杂度最差变为O(n)。

C++

class Solution {
    /**
     * param A : an integer ratated sorted array and duplicates are allowed
     * param target :  an integer to be search
     * return : a boolean
     */
public:
    bool search(vector<int> &A, int target) {
        if (A.empty()) {
            return false;
        }

        vector<int>::size_type start = 0;
        vector<int>::size_type end = A.size() - 1;
        vector<int>::size_type mid;

        while (start + 1 < end) {
            mid = start + (end - start) / 2;
            if (target == A[mid]) {
                return true;
            }
            if (A[start] < A[mid]) {
                // situation 1, numbers between start and mid are sorted
                if (A[start] <= target && target < A[mid]) {
                    end = mid;
                } else {
                    start = mid;
                }
            } else if (A[start] > A[mid]) {
                // situation 2, numbers between mid and end are sorted
                if (A[mid] < target && target <= A[end]) {
                    start = mid;
                } else {
                    end = mid;
                }
            } else  {
                // increment start
                ++start;
            }
        }

        if (A[start] == target || A[end] == target) {
            return true;
        }
        return false;
    }
};

源码分析

A[start] == A[mid]时递增start序号即可。