Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target.
Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
和 3 Sum 的思路接近,首先对原数组排序,随后将3 Sum 的题拆解为『1 Sum + 2 Sum』的题,对于 Closest 的题使用两根指针而不是哈希表的方法较为方便。对于有序数组来说,在查找 Cloest 的值时其实是有较大的优化空间的。
class Solution:
"""
@param numbers: Give an array numbers of n integer
@param target : An integer
@return : return the sum of the three integers, the sum closest target.
"""
def threeSumClosest(self, numbers, target):
result = 2**31 - 1
length = len(numbers)
if length < 3:
return result
numbers.sort()
larger_count = 0
for i, item_i in enumerate(numbers):
start = i + 1
end = length - 1
# optimization 1 - filter the smallest sum greater then target
if start < end:
sum3_smallest = numbers[start] + numbers[start + 1] + item_i
if sum3_smallest > target:
larger_count += 1
if larger_count > 1:
return result
while (start < end):
sum3 = numbers[start] + numbers[end] + item_i
if abs(sum3 - target) < abs(result - target):
result = sum3
# optimization 2 - filter the sum3 closest to target
sum_flag = 0
if sum3 > target:
end -= 1
if sum_flag == -1:
break
sum_flag = 1
elif sum3 < target:
start += 1
if sum_flag == 1:
break
sum_flag = -1
else:
return result
return result
sys
包,保险起见就初始化了result
为还算较大的数,作为异常的返回值。item_i
后即转化为『2 Sum Cloest』问题。『2 Sum Cloest』的起始元素索引为i + 1
,之前的元素不能参与其中。target
值,若第二次大于target
果断就此罢休,后面的值肯定越来越大。sum3
和result
与target
的差值的绝对值,更新result
为较小的绝对值。target
之差的绝对值只会越来越大。对原数组排序,平均时间复杂度为 , 两重for
循环,由于有两处优化,故最坏的时间复杂度才是 , 使用了result
作为临时值保存最接近target
的值,两处优化各使用了一个辅助变量,空间复杂度 .
class Solution {
public:
int threeSumClosest(vector<int> &num, int target)
{
if (num.size() <= 3) return accumulate(num.begin(), num.end(), 0);
sort (num.begin(), num.end());
int result = 0, n = num.size(), temp;
result = num[0] + num[1] + num[2];
for (int i = 0; i < n - 2; ++i)
{
int j = i + 1, k = n - 1;
while (j < k)
{
temp = num[i] + num[j] + num[k];
if (abs(target - result) > abs(target - temp))
result = temp;
if (result == target)
return result;
( temp > target ) ? --k : ++j;
}
}
return result;
}
};
和前面3Sum解法相似,同理使用i,j,k三个指针进行循环。
区别在于3sum中的target为0,这里新增一个变量用于比较哪组数据与target更为相近
时间复杂度同理为 运行时间 16ms