Sort a linked list in O(n log n) time using constant space complexity.
链表的排序操作,对于常用的排序算法,能达到 的复杂度有快速排序(平均情况),归并排序,堆排序。快速排序不一定能保证其时间复杂度一定满足要求,归并排序和堆排序都能满足复杂度的要求。在数组排序中,归并排序通常需要使用 的额外空间,也有原地归并的实现,代码写起来略微麻烦一点。但是对于链表这种非随机访问数据结构,所谓的「排序」不过是指针next
值的变化而已,主要通过指针操作,故仅需要常数级别的额外空间,满足题意。堆排序通常需要构建二叉树,在这道题中不太适合。
既然确定使用归并排序,我们就来思考归并排序实现的几个要素。
在按长度等分链表时进行「后序归并」——先求得左半部分链表的表头,再求得右半部分链表的表头,最后进行归并操作。
由于递归等分链表的操作需要传入链表长度信息,故需要另建一辅助函数。新鲜出炉的源码如下。
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: You should return the head of the sorted linked list,
using constant space complexity.
*/
ListNode *sortList(ListNode *head) {
if (NULL == head) {
return NULL;
}
// get the length of List
int len = 0;
ListNode *node = head;
while (NULL != node) {
node = node->next;
++len;
}
return sortListHelper(head, len);
}
private:
ListNode *sortListHelper(ListNode *head, const int length) {
if ((NULL == head) || (0 >= length)) {
return head;
}
ListNode *midNode = head;
int count = 1;
while (count < length / 2) {
midNode = midNode->next;
++count;
}
ListNode *rList = sortListHelper(midNode->next, length - length / 2);
midNode->next = NULL;
ListNode *lList = sortListHelper(head, length / 2);
return mergeList(lList, rList);
}
ListNode *mergeList(ListNode *l1, ListNode *l2) {
ListNode *dummy = new ListNode(0);
ListNode *lastNode = dummy;
while ((NULL != l1) && (NULL != l2)) {
if (l1->val < l2->val) {
lastNode->next = l1;
l1 = l1->next;
} else {
lastNode->next = l2;
l2 = l2->next;
}
lastNode = lastNode->next;
}
lastNode->next = (NULL != l1) ? l1 : l2;
return dummy->next;
}
};
count
表示遍历到链表中间时表头指针需要移动的节点数。在纸上分析几个简单例子后即可确定,由于这个题需要的是「左右」而不是二叉搜索树那道题需要三分——「左中右」,故将count
初始化为1更为方便,左半部分链表长度为length / 2
, 这两个值的确定最好是先用纸笔分析再视情况取初值,不可死记硬背。next
值置为NULL
, 否则归并子程序无法正确求解。这里需要注意的是midNode
是左半部分的最后一个节点,midNode->next
才是链表右半部分的起始节点。遍历求得链表长度,时间复杂度为 , 「折半取中」过程中总共有 层,每层找中点需遍历 个节点,故总的时间复杂度为 (折半取中), 每一层归并排序的时间复杂度介于 和 之间,故总的时间复杂度为 , 空间复杂度为常数级别,满足题意。
除了遍历链表求得总长外,还可使用看起来较为巧妙的技巧如「快慢指针」,快指针每次走两步,慢指针每次走一步,最后慢指针所指的节点即为中间节点。使用这种特技的关键之处在于如何正确确定快慢指针的起始位置。
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: You should return the head of the sorted linked list,
using constant space complexity.
*/
ListNode *sortList(ListNode *head) {
if (NULL == head || NULL == head->next) {
return head;
}
ListNode *midNode = findMiddle(head);
ListNode *rList = sortList(midNode->next);
midNode->next = NULL;
ListNode *lList = sortList(head);
return mergeList(lList, rList);
}
private:
ListNode *findMiddle(ListNode *head) {
if (NULL == head || NULL == head->next) {
return head;
}
ListNode *slow = head, *fast = head->next;
while(NULL != fast && NULL != fast->next) {
fast = fast->next->next;
slow = slow->next;
}
return slow;
}
ListNode *mergeList(ListNode *l1, ListNode *l2) {
ListNode *dummy = new ListNode(0);
ListNode *lastNode = dummy;
while ((NULL != l1) && (NULL != l2)) {
if (l1->val < l2->val) {
lastNode->next = l1;
l1 = l1->next;
} else {
lastNode->next = l2;
l2 = l2->next;
}
lastNode = lastNode->next;
}
lastNode->next = (NULL != l1) ? l1 : l2;
return dummy->next;
}
};
head
, 还考虑了head->next
, 可减少辅助程序中的异常处理。fast
初始化为head->next
可有效避免无法分割两个节点如1->2->null
fast_slow_pointer。sortList
中对head->next
做了检测。merge
归并排序。在递归和迭代程序中,需要尤其注意终止条件的确定,以及循环语句中变量的自增,以防出现死循环或访问空指针。
同上。
fast_slow_pointer. LeetCode: Sort List 解题报告 - Yu's Garden - 博客园 ↩